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MOMENT INVARIANTS FOR PARTICLE BEAMS*

Walter P. Lysenko and Mark S. Overley
Los Alamos National Laboratory, AT-3, MS H808, Los Alamos, NM 87545

ABSTRACT

The rms emittance is a certain function of second moments in 2-D phase
space. It is preserved for linear uncoupled (1-D) motion. In this paper, we
present rew functions of moments that are invariants for coupled motion. These
invariants were computed symbolically using a computer algebra system. Pos-
sible a~plications for these invariants are discussed. Also, approximate moment
invariants for nonlinear motion are presented.

INTRODUCTION

Moments and Moment Equations

Let g(Z, p,t) be a function defined on six-dimensional phase space. We define
the moment of g to be the integral of g over all of phase space, weighted by the
single-particle phase-space distribution function. That is,

<o) > = [ &% [ Pz f(75.0 95, (1)

where f is the distribution function. For a discrete distribution consisting of N
particles, with phase-space coordinates f;,p,, we have

N
<GERN > =3 D o(ZFu) (2)

This form is useful in computing moments in particle simulation codes. Note
that these momeits are functions of time cnly. A particle beam can be described
by a set of moments of some basie furictions such as the monomials in the
variables r,p.,y.p,, 2.p,. The moment description has the advantage of being
closely related to labora‘ory quantities. For example, the centroid of a beam in
the r-direction is given by < r > and the rmas width in the z-direction is given
by V< 1 >.

*Work supported by Los A!" mos National Laboratory Inatitutional Supporting Research,
under the auspices of the U.S. Department of Energy.



For particle beams in most noncircular machines, the distribution function
accurately satisfies the Vlasov equation
af oaf 0

p _
5t T 97 m+a,;'ﬁ‘°' (3)

where F is the sum of the external force and the space-charge force, whose
potential ¢ satisfies the Poisson equation

1 o
Vie=-— [ f(E5D). (4)

If we are describing the beamn with mormnents, we need a way to relate the inte-
gral in the above formula to the moments. (This is the major problem in any
simulation scheme using moments as the dynamical variables. We will not be
concerned with this here, however.) The rule for differentiating moments with
respect to time is given by’

i< >--<i > ()
at “ICES @I

which says that the derivative of a moment is the moment of a derivative. There-
fore, it is easy to get the equations of motion for the moments. For example,
the equation for the < zp, > moment i3

d<x > <(d) >}-<:(d)>
— T - —ZI)ps - —
at =P at”’? dt?
1 - .
= ;‘-<p:>+<:r,> (9)
- Ll 1,
= m<p,>+<:(ao+a|z+agx+ ) >
1
= ;<p:>+ao<:>+a,<:’>+ag<;‘1>+---.

Because we expanded the force into a power series, the right hand side of the
euation contains only moments. So the moment equations are a system of lin.-
rar differential equations except that, in the case with space charge, the force
coefficients will depend on the spatial moments.

Emittance and RMS Emittance

Emittance can be defined in various ways, but it is always some kind of area
in a 2-D projection of phase space. If the z-degree of freedom is uncoupled from
the y and z directions, then the total emittance in the z-direction is a conserved
quantity because it is the same as the phase volume. It is an invariant that does
not depend on the force.



The rms emittance in the z-direction is defined to be the following function
of second moments:

€ =<1 ><pi> - <zrp, > (7)

This definition assumes that the beam centroid is at the origin. Subtracting
< z > and < p, > from r and p,, respectively, in the above definition will
give the general formula. The rms emittance is conserved for linear, uncoupled
motion. To see this, simply differentiate ¢, with respect to time, assuming the
force is proportional to z, that is, assuming dp;/dt = a,z.

For uncoupled motion, the rms emittance is somewhat like the total emittance
in that it is also an invariant that does not depend on the force (value of constant
a,). But it is invariant only for linear forces. For coupled motion, there are nc
know invariants that are functions of emittances, even for linear forces. The
problem we solve in this paper is to find other moment invariants, analogous
to the rms emittance, that are valid for more general situations than linear,
uncoupled motion.

FINDING NEW INVARIANTS
Setting Up the Problem

Consider the following homogeneous quadratic function of the second mo-
ments in one dimension (the z-direction).
I = ¢y« ?><z?> 4ea<z?><zp, > +epa<z?><pl >
+ ¢ < Ipe >< 22> +c33 < Tp; >< zp; > (8)
+ ey <pl>c?>

For the following choice of the coefficients,

Cy = ].,
€3 = -1, (9)

other¢;; = 0,
the function / is the square of the rms emittance in the z-direction and is

therefore an invariant for linear, uncoupled nmotion.

Let us now find the moment invariant for linear motion in 2-D. To do this, let
us start with an expression like Eq. (8) but include all second motments involving
both the z and y directions. Then we will attempt to find a set of values for the

coefficients that makes the expression an invariant.
First define the vector

X = (<rz><z1p, > <zay><zp, >,
< PeI >, < PePe >, < PrY >, < PePpy >,
< YT >, < yps >, < yy >, < yp, >, (10)
< PyL > < PyPe > < Py > < PPy ).



This is a list of all the possible moments that our invariant can contain. Then
the proposed invariant can t-e written as

I1=XTCXx. (11)

Remarkably enough, in writing Eq. (11), we have already sufficiently restricted
the form of the invariant so that by applying the condition

d
;t'[—o, (12)

we can solve for the coefficient matrix C and thereby determine the desired
invariant. In taking the time derivative, we must assume that the forces are
given by

F, = za;: +ya;, (13)

F, = za,,+ya,,

Notice the symmetry of the force coefficients, which is equivalent to requiring
that the force be derivable from a potential. (Without this restriction, the
invariants do not exist.)

Because of the size of this problem (we have to solve for 55 coefficients), we
used the SMP (Symbolic Manipulation Program) computer algebra system to do
the algebra symbolically.

Using the SMP Computer Algebra System

The computer algebra system SMP is a produrt of Inference Corporation (.cs
Angeles, CA). It is an interactive system that takes commands at the terminal
and returns results on the screen. It can also read files containing commands. In
this section, we show some general features of this system. In the next section,
we will show how our actual problem was solved.

In SMP, most objects such as functions, matrices, and parts of expressions are
all represented by things called projections. For example, if p is a polynomial,
then the projection p(3] is the third term. To see how SMP works, consider an
object £. Now define some properties of £. If we think of £ as an array, then
the command

£(1,4]):6

defines the (1,4)-th element to have value 6. Now add another property to £ by
issuing the foliowing command:

2(x):7

This causes f to map the quantity £ into the value 7. If we now enter the
command



f($x]:$x"2

we define the function f(z) = r® (The $x is a dummy argument and is said

to be generic.) Now when f is evaluated, an argument of 1,4 returns 6, an

argument of x returns 7, and any other argument returns the square of the

argument. So, for example, the value of £[x] is 7, but the value of £[y] is y°.
More complicated definitions are possible. The following

f$x _= ($x>7 | $x¢-9)] : 75

says that if the argurnent is greater than 7 or less than -9, then the value of £
is 75. The symbol _= should be thought of as “such that.” Existing built-in
functions can be redefined. For example, the following

D(h($x],{$x,1,8y}] :g[$y]

adds to the differentiation function D the rule that the derivative of the function
his g. The list {$x,1,$y} means that we are taking the first derivative with
respect to $x and evaluating at $y. After we make this definition, D[x~2,x]
returns 2x so the old (built-in) definition is stiil there. But D[h(z],z] returns
g(z], using the new rule.

THE NEW LINEAR INVARIANTS

To ~olve the problem of the invariant for the linear coupled motion, we had
to define inany SMP functions. We show some of these here. In the SMP code,
the moment < g > is denoted by mon[g]. The linearity property of moments is
defined by the following SMP code.

mom(8x + $3y) :: mom($x] + mom[$8y)
mom($8y $x _= test[$x]] :: $x mom[$8y]

The $8y symbol is said to be doubly generic and stands for a complete expression,
not just a single term. The function test is defined to return a true value if
the argument is a constant. The following definitions cause <g> in the input
commands to be translated into swom(g] and print out mon(g] as <g>.

e ' m "IO'I["
Ny . g u]u

_mom([Pr,$xz] : Fat(,"<",$x,'">"]

This makes it possible to communicate with SMP using familiar notacion.
We define moments to be the list of variables. Right now, we are doing the
2-D case, so we define this list as {ollows.

moments : {x,px,y,py}



Now define der to be the function take takes a time derivative. In addition to
giving it the usual rules for differentiating possesed by the built-in D function,
we add the rules for taking derivatives of coordinates.

der(x] :: px
der(yl :: py
der[px] :: fx
der(py] :: fy

Now we give the rule that the derivative of the moment is the moment of the
derivative.

der[mom{$x]}] :: mom[der($x]]

We define a list of second moments, called vector by the following piece of SMP
code.

vector2:Ldist (mom[Union[Flat [moments*+moments]]]]
vector:Union[vector2]

This takes the outer product of moments, flattens this matrix into a list, and
converts this list into a list of moments of these quantities.
Now letting cmat be some matrix, we define eq, the proposed invariant.

eq: :Ex[vector.cmat.vector]

This is the same as Eq. (11), which says that our proposed invariant is a homo-
geneous quadratic combination of second moments. After defining the forces,

fx : x alx,x] + y alx,y]
fy : x alx,yl + y s(y,y)

we differentiate our proposed invariant with the der function. Setting the coef-
ficients of the moments and forces individually to zero leads to a linear system
of equations for the coefficients. Using a built-in function in SMP to solve this
system yields the coefficients in the invariant. Substituting these coefficients
into the expression for eq gives us the desired invariant. The result, which we
call I3, is the following:

I = & +2, + ¢, (14)
where
e = <r?’><pl> <izp.>?,
8 = <y'><pl> - <yp, >, (15)
and €, = <zry><pp,>—<rIp,><yp:>.

Equation (14) i1 our main result. It says that for two dimensinns, the invariant is
the sum of the square of the r-rms emittance, the square of the y-rms emittance,



and a third term, which could be called a “cross-emittance.” There is a similar
result for three dimensions.
We also found that there are other invariants for linear motion. If we search

icr invariants that are homogeneous quad-atic functions of fourth moments, we
obtair (for 1-D)

Ii=<z'><pl> -4 <2p, ><zp) > +3 < 2%p? > (16)

For sixth moments, we obtain

Is = <1®><pl>-6<z’p,><1p3>
(17)
+15 < 2'p? >< 2%l > -10 < £3p3 >%.

There are apparently an infinite number of such invariants. There are 1-D, 2-D,
and 3-D versions of all of them.

There is a very simple way to generate all these invariants. They are all of
the form

I,

B —

<(X = P)" >pm, (18)

where
IY

T 4+y+ 2,
’ (19)

P = p.+ Py + Ps
and where the “symmetrized” moment is defined by its linearity properties
<g+h>um = <g>m+<h>um

(20)
<ag>ym = a<gd>um

and by its action on monomials
< 'l y'p, Pl Sum =< z'pL y'p, 7P} >< 'p. y'p} "7 >. (21)

This says that the symmetrized moment is just the usual moment, multiplied
by & moment in which we interchange the powers of the coordinates ana the
conjugate momenta. The following, which computes the lowest-order invariant
in 1-D, shows how this works.

21, <(z-p)?>,

= <al-22p, 4 pi >,

= <>, -2<zp, >,+ <p?>, (22)
= <rl><pl> -2<pe><pr>+<pl><ri>

I, = <r'><pl> - <rp, >?



NONLINEAR INVARIANTS

Consider some distribution in (z,p.) phase space. Now consider a linear
transformation to a new coordinate system (Z, p;) in which the moment < 5, >
vanishes. The rms emittance for this dictribution is given by

e,__=\/21:2><p§>—<rp,>2=\/<5:2><ﬁf,>. (23)

In the new coordinates, the rms emittance is the product of the rms widths
in the z- and p.-directions. It is like an area in phase space. The cross term
— < zp; >? in the definition of the rms emittance serves to take out the effect
of the “tilt” in the phase-space distribution.

If nonlinear forces are present, then the “twist” of the distribution can change.
For example, if the initial distribution is & line in (z,p;) space, the action of
nonlinear forces will introduce an S-shape into the line. This causes the rms
emittance to grow. If we seek a moment invariant that is preserved in the
presence of nonlinear forces, then we need terms like < zp2 > in the invariant
that will take out the effect of the twist in the distribution. The higher invariants
I, do contain such terms; however, as we shall see, these are not nonlinear
invariants.

But let us look for nonlinear invariants that are combinations of the I,.
Consider the following candidate for a nonlinear invariant.

Because it is a function of linear invariants, J is constant for linear motion
regardless of the value of c. Let us try to choose a value of ¢ that will make J a
nonlinear invariant. To do this, consider the distribution in (z, p,) phase space
that is constant in the region

IA

T

IA

IMGS

—AP: < p:e— (OI'*'BI:’) < Ap,

—~ZImax

(25)

and zero elsewhere. This distribution 1s shown in Fig. 1. This distribution has
four parameters: Tpnas, Ap;s, a, and 3. In order to get simplif;, ihe final result,
let us eliminate the parameters Ap. and 3 in favor of the rms emittance ¢, and
another parameter §, which measures the amount of twist in the distribution.

Je 525 bel
AP: - z z y ’ﬁ — —2—;‘—‘- (26)
maz maxrx

Now compute the linear invariants /; and /, for the distribution parametrized
by Zmas, €z, a, and 8. This can be done using SMP to symbolically compute the
required integrals over the distribution given by Eq. (25).

1'2 = C: + 62E: (27)



Fig. 1. This phase-space distribution was used to obtain a nonlinear iavariant by requiring
that the value of the invariant did not depend on the amount of “twist” in the distribution.

I = 125’596; 420 871 4+ O(6%) (28)

Notice that these linear invariants depend only on the rms emittance ¢, and
on the parameter §, which measures the amount of twist in the distribution.
These invariants do not depend on a, the amount of tilt in the distribution,
nor oll Im,r, Which measures the eccentricity of the distribution. Substituting
the above I, and I, in the definition for J, we see that if ¢ = —~10, then J is
independent of the twist parameter §. So the desired invariant is

J=1I,-10I2. (29)

The -tility of this invariant was verified numerically for a situation in which
a uniformly filled ellipse in phase space was transformed by a system containing
linear and cubic forces. Figure 2 shows the initial and final phase-space distri-
butions for our example. The strength of the nonlinearity is sufficient to put a
noticeable twist in the distribution, which initially did not have any. Figure 3
shows some of the linear invariants and the new J invariant as functions of time,
siiowing their evolution between the initial and final states shown in Fig. 2. In
this graph, all invariants are normalized by their initial values. We see that the
linear invariants are not constant and that the higher invariante are even more
sensitive to the nonlinearity than is [;. The new invariant J is more constant



Fig. 2. The nonlinear invariant was checked by simulating the evolution of the initial
distribution shown on the left in the presence of linear and cubic forces. The final distribution
is shown on the right. The strength of the nonlinearity, for the given beam size and the elapsed
time chosen, is large enough to introduce a noticeable twist in the distribution.

3
Ig
2 - la
I,
I |
J/
0

Fig. 3. The linear invariants [, and the approximate nonlinear invariant J are shown as
functions of time for the situation described in Fig. 2. All invariants are normalized by their
initial values, Even though the quantity J is a linear combinaticn of Iy and the aquare of /3,
it is approximately constant.



than the rest, but it is not an exact invariant.
DISCUSSION

The moment description is useful because it is so closely related to lahoratory
quantities. The well-known rms emittances ¢,, €,, and ¢, are functions of second
moments.

= <:|:2><p:>—<3;p,>2

= <y?><pl> - <yp, >? (30)
3

€

€

€

nw T W W

= <z2'><pl>~-<z2p, >

These quantities are invariant for linear, uncoupied (1-D) motion. If an ac-
celerator or beamline has any coupling forces, even if they are linear, the rms
emittance can change. Thus, the growth in an rms emittance is not necessarily
an indication of nonlinearities in the machine.

We have shown in this paper a new moment invariant, /5, that is conserved
for linear forces even in 2- or 3-D. In 1-D it is the same as square of the rms
emittance. In 2- or 3. D it is the sum of the squares of the rmis emittances
together with new cross terms. In three dimensions, we have

I = <z?><pd> - <zp, >?
<y?><pl> - <yp, >?

<2¥><pl> - <zp, >? 31)
2<zy>< ppy > -2< zp, >< yps >

2<2z><ppy > =2< zp, >< 2p; >

+ + + + +

2<yz><pypy > =2 < ypy >< zp, > .

This invariant, or any of our other new invariants, is easily obtained using the
formula given by Eq. (18). In this case, we just expanded

<(:"-'+'y+"7—p.l"'pv_pl)2 >lym-

The utility of the new invariant is that it is conserved for any kind of linear
tnotion, even with coupling present. Therefore, if a simulation or measurement
showed that the quantity I has increased, then we can conclude that the accel-
erator or beamline contains nonlinearities.

We have also found other moment invariants for linear moticn that are ho-
mogeneous qu .dratic combinatiuns of higher moments; these are the quantities
Iy, 14, Ig, etc. All these exist in 1-D, 2-D, and 3-D versions.



Consider, for a moment, uncoupled linear motion. We know that the beam
current and the rms emittance are the only significant beamn. parameters in this
situation®. Suppose we have some beam and some< beamline. All we have to
know is whether the beamline can transport the emittance of our beam. Neither
the dctails of the machine acceptance nor of our beam are important. We know
that we can always make a linear matching section to ma’ch our beam into the
machine. This is true because any beam of a given emittance can be transformed
by - linear transformation into any other beam of the same emittance.

The above is only true if our knowledge ia limited to second moments. That
is, we consider two beams identical if they have the same collection of mcoments,
np to second order. If we describe ou: beam to higher order, then we need
new invariants. This is how the higher invariants [, presented ir this paper can
be used. For example, if we describe a beam by moments up to fourth order,
then the invariant beam parameters are /; and /4. ([; is the square of .he rms
emittance, of course.)

In the more general situation of linear coupled motion, tl.» same ideas apply,
but we need additional invariants. In a second-order aescription in 2-D, we peed
two invariants, but we have only one, the 2-D version of /3. We need further
work to determir these invariants. Before we discuss extending these results to
nonlinear motion, let us consider other possible uses for the linear invariants.

In numerical simulations, it is useful to use slow variables. For example,
for nonlinear oscillatory single-particle motion, it is better to use amplitude-
phasc variables rather than z,p, becauts we are solving directly for the effect
of the nonlinearity. If the nonlinearity is zero, then the amplitude aad phase
are constant. In the same way. we could ise nur moment invariants as the
dynamical variables in a simulation code. To Jdo this, we have tc determine all the
independent invariants up to a given order. In linear single-particle motion there
is a simple relation between the amplitude-phase variables and the action-angle
variables. If the new monient invariants are like the action variables, perhaps
we can find a Hamiltonian formulation of the moment equations. Therefore, we
believe the linear moment invariants may have sigrificance both in numerical
simulation and in theoretical anelysis of beam motion.

*The beam current depends on the charge in the beam, which is the 2eroth phase-space
moment and could be considered to . the invariant /o in our scheme. We ptefer to not
consider here moments below second order and to consider space charge as a source of forces
in addition to those of the beamline elements.



Because the linear moment invariants respond oanly to nonlinearities, they
are useful in studying nonlinear motion as well as linear motion. However,
determining nonlinear invariants would be even more useful. For example, we
would like an invariant that is constant if no fifth- or higher-oraer forces are
present. Such invariants would help us to analyze aberrations. We found the
approvimate nonlinear invariant J by assuming a certain mode! for a beam.
The difficulty with working with nonlinear invariants concerns the handling of
correlations. For example, if we differentiate the expression for J, we get many
terms that do not appear to cancel. However, in a particular beam, such as in
the example used in the numerical simulation shown in this paper, high-order
correlations are absent. Furthermore, some of this lack of correlation is preserved
throughout the motion. (Exactly what happens depends on the initial condition
and the forces.) This means that some of the higher-order moments are actually
functions of lower-order moments. The behavior of these correlations muat be
understood before we can derive more useful nonlinear moment invariants in the
way we did for the linear case. Fortunately, the evolution of the correlations can
be studied by the easy-to-use moment equations. This is because the correlations
are just combinations of moments; they consist of differences of moments and
the expression describing the moments in the absence of correlations.
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